Climate Change Impacts in the Puget Sound Region

Lara Whitely Binder
Climate Impacts Group
College of the Environment | University of Washington

Snoqualmie Watershed Forum
July 20, 2016
The UW Climate Impacts Group

Science for climate resilience

Working since 1995 to....

• Produce scientific information that is both useful to and used by decision makers

• Conduct decision-relevant climate research

• Support the interpretation and application of climate science in decision making
Reframing the “Bad News”

We need to know
— and we have the opportunity to know —
what lies ahead if we continue with “business as usual”
Key Changes “Driving” Climate Change Impacts in the Puget Sound Region

Substantial warming
Increasing heavy rainfall
Changes in hydrology (snow, streamflow)
Sea level rise
Changes in ocean conditions
Key Changes “Driving” Climate Change Impacts in the Puget Sound Region

Substantial warming
Increasing heavy rainfall
Changes in hydrology (snow, streamflow)
Sea level rise
Changes in ocean conditions
Different scenarios result in different climate change projections.

Figure source: van Vuuren 2011
Puget Sound
Substantial Warming, Variable Rainfall

Temperature Difference
(Relative to 1950−1999 average)

- **Historical**
- **Low Emissions (RCP 4.5)**
- **High Emissions (RCP 8.5)**

Precipitation Change
(Relative to 1950−1999 average)
More Intense Heavy Rains

Heaviest 24-hour rain events, 2080s:

Higher intensity:
 +22% (range: +5 to +34%)

Today’s heaviest 24-hour rain events occur more frequently

1980s: 2 days / year
2080s: 7 days / year

Changes in Winter Atmospheric Rivers along the North American West Coast in CMIP5 Climate Models - Warner, Mass, Salathé, J Hydromet, 2014
Are these changes in climate big enough to matter?
Embedded Expectations of “Normal” Climate

Land use planning
Infrastructure design
Operations and maintenance
Regulations *(coming in and going out)*
Compliance with NPDES permits, CSOs
Non-point source management
Energy supply, transmission
Recreation & tourism
Habitat restoration
Emergency services
Risk management
Water supply
Our primary mechanism for storing water – snow – is sensitive to warming.

The Cascade and Olympic Mountains have the highest fraction of “warm snow” (snow falling between 27-32°F) in the continental U.S.

(Mote et al. 2008)
Avg temperature, October 2014 - March 2015: + 4.7 degrees above the 20th century long-term average (warmest on record for WA)

Office of the WA State Climatologist

All Scenarios Indicate Less Snow

Projected loss in April 1 snowpack, Puget Sound region:

2050s: -29%
2080s: -55%

Mauger et al. 2015; figure source: Skagit Climate Science Consortium;
Variability Remains Part of the Story: Continued Fluctuations in the Long Term Trend

Length of Snow Season at 4000-5000 ft. in the Cascades
(Approx. elevation of Baker, Stevens, Crystal)

Hydrology is most affected in basins that historically accumulated snow.

Rain dominant

Mixed rain and snow

Snow dominant

Important caveats:

Naturalized flows (flows without the influence of dams)

Does not include atmospheric river events (important in rain, mixed rain-and-snow basins)

Mauger et al. 2015
Climate Change and Flooding: Physical Drivers

Extreme events:
More frequent heavy rain events

Seasonal changes:
Less snow, more rain

Sea Level Rise

Storm Surge

Heavy Rainfall

Snow

“Triple Whammy”
Increasing Flood Risk

In many Puget Sound rivers:

- Future 100-flood events are larger*

- The frequency of our *current* 20-, 50-, 100-yr flood events increases

*not accounting for dams

Mauger et al. 2015; photo: King County
Increasing Flood Risk

Change in streamflow volume for the 100-year (1% annual probability) flood, Snohomish River, 2080s:

+23% (range: +1 to +58%)

Changes relative to 1970-1999, for a moderate (A1B) warming scenario

Mauger et al. 2015; photo: King County
By the 2040s on the Snohomish River:

- The **10-year** flood will become a **5-year** flood
- The **100-year** flood will become a **30-year** flood
Change in Flooded Area: 100-yr event (2080s)

Figure source: Rob Norheim, Climate Impacts Group
Hydrologic Changes Affect Salmon Across Full Life-Cycle

Eggs in stream gravel hatch in 1-3 months

Alevins in stream gravel 1-5 months

Fry emerge in spring or summer

Juvenile fish in freshwater a few days to 4 years, depending on species and locality

Smolt migration to ocean usually in spring or early summer

Fish spend 1-4 years in ocean

Timing of migration to spawning grounds depends on species and race

Fish spawning in freshwater stream

Warm, low streamflow

Early peak flows

Floods

Ocean Acidification? Warmer sea surface temps?
PNW agriculture is fairly adaptable, although some crops and locations are more vulnerable

Key drivers of impacts (can be + or -):

- More winter precip – wetter fields?
- Increased summer heat stress
- Decreased summer water supply
- Longer growing season
- CO2 fertilization effect (initially?)
- Changes in plant diseases, pests, weeds
- Increased fire risk in rangelands
- Reduced nutritional quality and decreased digestibility
Potential Declines in Berry Production?

Chilling temperatures, water supply are key.

Extended periods between 32°F and 45°F are ideal for raspberry chilling.

Warm air temperatures during winter may result in lower raspberry yields.

Changes in cultivars? Impacts on blueberries?

Mauger et al. 2015. Ch 8, Agriculture.
Growing Opportunities?

From Mauger et al 2015, see: Hannah et al. 2013
Additional Impacts: Ag and Flooding

- Increased potential for pollutants to settle on ag lands
- Disruptions to farm operations (e.g., milking)
- Flood risks to farm animals
- Damage to farm infrastructure, crops
Increased fire risk

Increased risk of insect outbreaks

Reduced suitability for key pine species

An aerial photo of the Paradise Fire shows smoke rising near the Queets River Sunday in the Olympic National Park. (U.S. Forest Service)
What are our choices for dealing with this reality?
[Not a recommended course of action]
Mitigation *and* adaptation are required

Mitigation
Reducing emissions of greenhouse gases

Adaptation
Preparing for and managing the change that occurs as mitigation strategies are implemented.
Adaptation Planning: Answering “The Climate Question”

How does climate change affect what I am trying to accomplish?

Question relates to activities at any scale...
More specifically….

- Can we **achieve our goals** in a changing climate?

- How do we **protect our investments** as the climate changes?

- What is necessary to **reduce risks** associated with a changing climate?

- How do we **avoid creating new risks**?

- What **opportunities** should we prepare for?
General Adaptation Tools

- Zoning rules and regulations
- Taxation (including tax incentives)
- Building codes/design standards
- Utility rates/fee setting
- Public safety rules and regulations
- Issuance of bonds
- Infrastructure development
- Permitting and enforcement
- Best management practices
- Outreach and education
- Emergency management powers
- Partnership building with other communities
Who is Working on Climate Resilience in WA? (sample)
Resources to support decision making

Dalton et al. 2013
Snover et al. 2013
Mauger et al. 2015

Available for download at https://cig.uw.edu/
Regional climate is changing and continued rapid change is expected, absent significant reductions in greenhouse gas emissions.

Climate change will have important implications for the build and natural environment in the Puget Sound region.

We have the knowledge, tools, data, and need to start preparing for climate change.
Sea Level Rise Projected in All Scenarios by 2100

Projected Range, Seattle
Relative to 2000 (NRC 2012)

<table>
<thead>
<tr>
<th>Year</th>
<th>Projections</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>2030</td>
<td>+2.6 in.</td>
<td>-1.5 to +8.8 in.</td>
</tr>
<tr>
<td>2050</td>
<td>+6.5 in</td>
<td>-1.0 to +18.8 in</td>
</tr>
<tr>
<td>2100</td>
<td>+24.3</td>
<td>+3.9 to +56.3 in</td>
</tr>
</tbody>
</table>